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1. Introduction.

A large literature has been devoted to studying the asymptotic properties of the linear
stochastic system

(1.1)X = AXj + eBXF(ý,), Xo = x E Rd

where A, B are constant d x d matrices and F(ýt) is a mean-zero function of an ergodic
Markov process on a compact state space M. Of particular interest is the top Lyapunov
exponent

(1.2) A(E) = lim t-1 log ¥tI

and the rotation number. suitably defined in case d = 2. To analyze this system it is noted

that the joint process (XI. ý1 ) is MarKovian on the product space Rd x -l with infinitesimal
generator

(1.3) L = Lx = G + AX .V + E(BX. V)F(ý)

Here G is the generator of the noise (s,); the second term is a "systematic derivative.'
making no reference to the noise process. The third term mixes the noise and state
variables, inviting the term "noisy derivative" and is the source of the analytical challenge.

This model is referred to as a "real-noise driven system."
It is well known that the noise process obeys a central limit theorem in the form

(1.4) 6 F(ý,)ds =• N(0. o2 t) (6 10)

a normal law with mean zero and variance a"t, where the variance parameter a2

-2(G-'F, F) and the inner product is computed in terms of the invariant measure of
the process (s,). Therefore one may attempt to analyze the asymptotics of (X,.ýt) by
studying a related system driven by white noise

(1.5) dl = Altdt + EBYý o dwt

where (wt) is a Wiener process with mean zero and variance a2t. The diffusion process
(Yt) is Markovian on Rd and has infinitesimal generator

1 r 2  .7) 2.

(1.6) L2 =Al'.V + )1(BY

One may conjecture that the asymptotic behavior of the Lyapunov exponent for the real-
noise driven process (Xt) is equivalent to that for the diffusion process (1-t). at least to
the first approximation. It is our purpose to carry out the details of this plan in cases of

interest.
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2. Nilpotent Systems.

In a previous paper [5] we investigated the Lyapunov exponent for white noise systems
with a nilpotent deterministic part: Ad = 0, Ad-I non-zero and B generic. This includes
the free particle perturbed by multiplicative white noise as well as other models of physical
interest. Recently these results were extended to systems driven by "telegraphic noise,"
where M = {-1, 1}, by Arnold and Kloeden [7]. Now we can show that these results can
be extended to the general real-noise driven system. We have the following theorem.

THEOREM 2.1. Let A(c), r(c) be the Lyapunov exponent and rotation number of the 2 x 2
system X' = [A + EBF(ýt)]Xt where A2 = 0, A non-zero and (Cf) is a finite-state ergodic
Markov process. Suppose that (Be', e) > 0 where Ae = 0. e non-zero, (e, e-) = 0. When
c 10 we have

(2.1) A(O) _- C 1e2 / 3  r(E) ,- C2e2/3

for positive constants C1 , C2 . These expansions are precisely the same as for the Lyapunov
exponent and rotation number of the associated diffusion process (Y1).

We compute the Lyapunov exponent by the "adjoint method." This consists in writing
the generator in terms of a system of polar coordinates (p, V) and setting Q(C, V) = L(p).
The angular process (Cj, ýt ) is ergodic with stationary measure N(dC x dp) and the usual
formula for the Lyapunov exponent is A(E) = ffxs,-, Q(ý,V)N(dC x dyp). In the present
case, A(S) may be characterized as the unique number A for which there exists a function
f(y, C) solving the equation Lf = Q - A. Indeed, integrating both sides against N(dC x
dj-) shows that A = A(e). Since this equation may be difficult to solve exactly, we may
obtain asymptotic approximations by replacing L by a suitable approximate generator. or
equivalently to find a function f, and a number A, such that Lf, = Q - A, + O(R,) for
a suitable remainder term Re. Integrating this equation against N(dC x dP) produces the
asymptotic statement A, = A(e) + O(R,). It remains to find the approximations f.. A,.
RE.

To do this we apply a method of "homogenization." We write the noisy part of the
generator in the form G + 6V and show that this is approximated by a diffusion operator
in the following sense: there exists a second order operator L0 : CoC(R2 ) --+ COO(R 2) and
operators L, -C'(R2) --+ C-(R2 x M) (i = 1,2) such that for each f E CO(R 2) we have

(2.2) (G + bV)(f + 6L1 f + ,5L 2f) = b2(Lof) + O(6) b 10)

This allows us to reduce to the case of a white-noise drive system for which we know
the asymptotics of the Lyapunov exponent and rotation number. The details appear in
sections 4 and 5.
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3. The Harmonic Oscillator.

We now compare the small-noise behavior of the stochastic harmonic oscillator for
the cases of real noise and white noise. The real noise system is defined by X' = AXtdt +

eBXF() where A (0 1and B 0) with -y > 0. We assume specifically

that (Ct) is a finite-state Markov process with self-adjoint generator (reversible case) and
invariant measure v(dC). We take a system of polar coordinates (p, cp) with xi V =

ep cos ýP, X2 = e& sin v. The stochastic equations take the form

(3.1) "= -v + 4F(Ct)/VNcos 2 ('t

pt = E[F()t) / jsin pt cos vt

The infinitesimal generator of the joint motion of (Ci, •. Pt) is

Lx = G - v/ + E[F(C)/1VrjI coS2 V + sinVcos4 ).

The white noise system is defined by the Stratonovich equation

(3.2) dY'1 = AY'dt + eBYt o dwt

where wt is a Wiener process with mean zero and variance ao2 t. Its generator is given by

oL 1 2 2 02 .a 02

0V 2 Ol (p

where we make the identification a 2 = -2(G-'F.F).
To obtain the asymptotic form of the Lyapunov exponent of the real-noise driven

system we look for an approximate solution (f, A) of the equation Lxf = Q - A where
Q( C, 9) = Lp = e[F(C)l/ Vr'] sin a cos . This is sought in the form

(3.3) f = f0 + '_ff + 62f 2

3 .3 A0 "+ EA, +c 2A2

leading to the conditions

aP
(G - v/'-O)fo= 0

(G - ViP-t)fl + [F(sl)/V-,'] cos 2 Vf• = [F()/V/-] sin, cos; - A

(G - vF- J2+ [r(ý)/ CS cos = -A 2 .
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This leads to fo= 0, A1 = 0. f, = (G - ) sin p cos VI/v: which may be solved in
'erms of eigenfunctions O'k where G'k = -pklk for k = 1..., N with 41 = 1, pi = 0 and

Pk - 0 fork> 1 by writing F(C)sinrcosp = Z"k>I (F. ?kk)'k sin2o, leading to

f,= (1 /V(5) Z [2 Yij sin 2i,; + V~/--cos 2,,] (F. ?P'k)'k/(/k ± 41).
k>l

Averaging he .*, equation with respect to the normalized measure dqpv(d•) and integrating
by parts lea-.'s t J

-A 2 = (covs) F(ep)cos2 fid'pv(dC)

= -(2/vr•) f F(') sin p cos pf ,dv(dC).

From the above spectral representations. we can compute the inner product of f, and
F s'n 2p to obtain

FPk(F, ?Pk)2 (sin 2 2)/4(IP2 + 4-)

k>l

with the result ([4], [6])

(3.4) 2.1 = (1/4-y) k(F, ¢k)2/(p +F4,.
k>l

To obtain the asymptotic form of the Lyapunov exponent of the white-noise driven
system wv look for an approximate solution (f, A) of the equation Lyf = Q - A where
Q(,p) = Lyp = (E 2/2•)cos 22 i'cos 2.. This is sought in the form

f= fo + £2!2

A O + E2\

leading to the conditions

--f2f+ = o51P

leading to the choices f0 = 0 and the well known result (replacing d¢o by dP/27)

A("h'5 = (a2/2,))(2-f)-' fJ cos2 V cos 2;d•

If we make the identification a 2- (-(G-1F, F), then this may be written as

(3.6) 2 = (1/41) (F,i•,k)2/lP.
k>1

These computations are summarized as

5



PROPOSITION 3.1. We always have the inequality A""R < A/hite.

To resolve this aPparent discrepancy, it suffices to consider a parametrized family of
real-noise processes 6 o-F(, 8 •-)c)ds. When b 1 0 these converge to a Wiener process
with mean zero and variance a2 = -_(G-'F, F). The stochastic equation has the form

Xt = AX, + [6-F(•,6 -2 )]BX,

with infinitesimal generator

Lx = AX. V + b-2G + E6-'F(ý)BX V.

To obtain the corresponding form of the Lyapunov e.-ponent, it suffices to substitute above.
with I'k replaced by Pk 6 -2 and F replaced by F6-',. Thus

Areal()--(/4"))6- Z()6k-2- 2 )(F, k' ) 2 /[(Pk6- 2 )2 + 4")

2 (1/4-~y J>~k(F t& 2/p

k>1

When b 10 we have

PROPOSITION 3.2., lim AIed(b) = (1/4") (F,g'k) 2 /pk = Aw'hite.
610 k>1

Thus we retrieve the white noise result in the CLT limit.

4. Proof of Theorem 2.1 (special case).

We are given an ergodic Markov process {f(t)}1t>o on a compact state space M: the
infinitesimal generator is denoted G and the invariant measuro v-thus G*v = 0 and
G1 = 0. We further assume that the Fredholm alternative is satisfied for the simple
eigenvalue zero, i.e., the inhomogeneous equation Gf = g has a solution provided that

,f g(6)v(dý) = 0; the solution is uniquely determined by requiring fM f(ý)v(d6) = 0.
This condition is satisfied for a finite-state Markov process or for Brownian motion on a
compacc manifold, for example.

Let there be given a function F(6) with mean value zero, i.e., ff F(6)v(d6) = 0. Let
(x(t), x'(t)) = (XI(t), x2(t)) be the solution of the second-order system x"(t) = exr(t)F(J(t))
with the initial conditions x(0) = zX, 4'(0) = X2. This is a Markov process on the product
space R2 x Al with the infinitesimal generator

(4.1) L = G + X2 + eF(Oxi

The top Lyapunov exponent is defined by

(4.2) A = lim C' log VX(t)2 + x 2 (t) 2.
tjoc
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This is invariant under linear change of coordinates in (x1, X2) space, in particular the

scaling transformation (X1, X2) --+ (X1 , CX2).
We introduce a system of "polar coordinates" by

(4.3) x1 = epcosp, x 2 = CePsin s.

We make the identification x(t) = x 1(t), x'(t) = X2(t) and consider the joint process

(ý(t),p(t),cp(t))t>o. After a short calculation we find that

)'(t) = -C sin 2 ýP(t) + (E/C) cos 2 (p(t)F(C(t))

(4.4) p'(t) = C sin ,-(t) cos cp(t) + (e/C) sin ýp(t) cos V(t)F(l(t)).

The joint process (C(t), (t),p(t))t>o is a Markov process on the space M x R x R with

the infinitesimal generator

a a
L = G + EF(C)xiL +X2

aX2  ax,
(4.5) = G + (-C sin 2 V + (E/C) cos 2 VF(C))i

av
+ SinVcos(C +9

:in fact the first two components already form a Markov process, but we shall need the
full generator in what follows).

We write the geneL ator in the form L = G + 6V + D, where

V = F(f) (sin vcos v-p + cos2

a2 aD sin •cosV 1--P - Csins V-$

and 6 = E!C. We refer to G as the noise generator, V as the noisy derivatives and D as

the systematic derivatives. We also note, for further reference, the function Q(p, () defined
as Lp(p, C) is computed as

(4.6) Q(,p, ý) = C sin p + (e/C)F(C) sin so cos V.

In previous approaches to stochastic Ly&pInov stability, one solves approximately the

equation Lf = Q - A for suitable f = f(%V, ý) and A E R. in the present case this is

not directly possible, because of the presence of the noise variables F(C) which intervene

both in tl'e genpr•tor and in Q(,;.C). Therefore we apply a process of "homogenization"

to replace the operator G + 61' by a suitable diffusion operator in the (cp,p) space and

ultimately replace Q(y, ý) by a function Q(p) related to a suitable diffusion process.

7



PROPOSITION 4.1. There exists a second-order differential operator Lo in the ( p. a) vari-
ables with the fo/lowing property: for any f E C'(R x R) there exist correctors f, E
CO( R x R x M) (i = 1,2) such that

[G + 6V](f+6f, + 62 f2)

(41.7) [G+ (6F()(COS2V" +sin4 cos •-p (f + 6f1 + 62f2)

= 6b2(Lf)(p,p) + O(6P) (6 1 0)

,~ 2

where Lof(p,tp) = 1a 2 Sin CosV -L +Cos4V-A f and a2 - 9(G-'F,F) > 0. The

term 0(60) is estimated in terms of the C3 norm off.

PROOF: We choose the conectors in order to cancel the term of order 6 and to render the
coefficient of 62 independent of ý. This requires that we have the equations

(4.8) Gf1 - cos2 - 0sin cos ýoF(ý) T = 0

(49) f2 - cos s F'F(ý)2f = function of (p, p).(4.9)a -f -cs19(P•-

The first of these is satisfied by taking

fi = -H(C) Cos2 V2-- +sin cos Vf

where H(ý) is the solution of GH = -F, normalized so that fM H(C)v(dý) = 0. With this
choice of f, we substitute in the equation (4.9) for f2 and average with respect to v(dr).
The Gf 2 term drops out and the right side of the equation is found to be

1 +2 2 a i (c) 2

(4.10) a2  o ý" + sinVcos4 f =: Lof

where a2 = 2 fM F(C)H(C)v(dC).

Finally f2 is determined by solving the indicated equation (4.9) subject to the nor-
malization fMf2(C,pP)v(dC) = 0. This is possible, since Gf 2 has been arranged to be
perpendicular to the null space of G*, completing the proof.

If e/C 1. 0 we may restrict attention to the "approximate generator" (E/C)2 Lof -

C sin 2 4p-L + Csinipcos,4-. In order for the terms to balance we are led to the equation
(E/C)2 = C or C = _2 1 3 as we had in the diffusion case [5]. More precisely, we consider the
white noise system dz = X2 dt, dX2 = Exz o dw where {w(t) : t > 0} is a Wiener process
with mean zero and variance parameter a 2t. For this system the infinitesimal generator

is+e- X2 _A_ if we take the polar coordinate system xI = ePcos•.

X2 CeP sin p, we obtain the angular equation

(4.11) dp= -C sin 4 cosp + (ae/C)2 cos 2 V o du

8



with the Q function (Q, = L2p)

(4.12) Q, (P) = -C sin p cos 'p + (ae/C)2 cos2 'p cos 2'p.

From our previous work [5], we know that if we choose C = e21/ 3 , then L = e2= 1 3 L_,
where L1 is hypoelliptic with invariant measure p and the Lyapunov exponent is A, =
f ", Q, (v)y(d•p) > 0.

In order to find the Lyapunov exponent of the real-noise driven system, it suffices to
find f(V,C) and A- such that Lf(,pC) = Q(V,•) - A' + 0(e)., To do this, we proceed in
three steps.

Step 1. Let Pi('p, ), P2(P, ý) be the correctors such that

(4.13) (G + 6V)(p + bpi + 62P2) = 62LOp + 0(63)

In our previous paper [5] we showed that the cperator - sin 2 'V + L0 on [--,r, 7r] has
an invariant measure p and satisfies the Fredhoim alternative for the simple eigenvalue
zero and that A= f_, Q('p)1y(d'p) > 0, where Q('p) =: sin 'p cos V + Lop = sin V cos ýp +
ao 2  os 2ý.,

Step 2. Let h = h('p) be the solution of the equation

(4.14) - sin2 (pa +L. h=Q(V)-Al

normalized so that fr,• h('p)p(dp) = 0.

Step 3. Let hj('p,C), h2 (P,C) be the correctors defined above for the function h, i.e..
(G + 6V)(h + bh- + 62h 2 ) = 62Loh + 0(63).

PROPOSITION 4.2., With the above notations, we let

(4.15) f(V, ý) = h(V) + 6(ha - p, )(,p, ý) + 62 (h 2 - P2)(%', )

where 6 = e/C, C = e213.. Then Lf('p,C) = Q(,D') - e2/3 AI + 0(e) in particular the
Lyapunov exponent A(e) = e2/3A, + 0(e), e . 0.

PROOF. Recall that L = G + 6V + D where G is the noise generator, V contains the noisy
derivatives and D contains the systematic derivatives. From step 1, we have

(G + 6V)(p + 6pi +6 2p 2 ) = 6 2 a2 cos cos2cp + O(e)
L(p + bpi + b2 p2) = Csin'Vcos'p + b2 2 COS2 o2 cos2, + 0(e)

= e 2 /3Q((p) + 0(_)

(G + 6V)(h + 6hi + 62 h2 ) = b2 ILoh + 0(e)
L(h + 6hl + 62h 2 ) = -C sin 2 p h'(') + , 2 L0 h + 0(E)

= E2/3(Q('P) - A,) + 0(e).

9



Subtracting these two gives

L(h - p+ b(hi - pi) + 6 (h2 - p2)) = -_2/3A1 + O(E).

Adding Q(t, •) = Lp to both sides gives the desired result. To complete the proof. we
may argue directly in terms of martingales: writing the above equation as Lf = -62/ 3 A1 +
0(c), we have that Mt =: f(p(t),p(t),w(t)) - fLf(p(s),c(s),i(s)ds is a martingale.
But Mi = o(t) when t T o0; therefore we may divide by t and take the limit obtaining
limtTg p(t)/t = -AIE2/ 3 + 0(E). We have the following theorem.

THEOREM 2.1 (A)., The top Lyapunov exponent satisfies

A(e) = lim t-lp(t) = e2/3(sin Vcos + ao2 cos2 vcos2v), + 0(e) (E i 0),
ttoo

By the same method we can compute the rotation number, defined as
r(e) = limtT1. t-'p(t). To do this we verify the following:

PROPOSITION 4.3, Let k(V) be the solution of

- sin 2 Vk'(V)+ Lok = Lo)V - sin 2 'ýp - (Lo•),, + (sin2 0

Let kj(o), k2(V) be the correctors defined above for f = V + k(V). Then L((p + k(V) +
e'/ 3 k 1 (p) + E 2 / 3 k 2 (P)) = E2 / 3 (Lp + sin 2 P)M + O(E),

Noting that k(,,) and the correctors o, •0, ki, k2 are periodic functions we have the
following result:-

THEOREM 2.1kB). The rotation number is computed as

r(e) = lim 0(t)/t = e2/ 3 (sin V cos V + a2 sin 2 A, + 0(e) (e 1 0).
1l10

5. Proof of Theorem 2.1 (general case).

We now generalize the set-up of the previous section to the stochastic system

(5.1) X'(t) = [A + EF(ý(t))B]x(t)

where x(f) = (X1(t),X 2(t)) and A $ 0 is a 2 x 2 matrix with A2 = 0. Without loss of

generality we may take a basis in which A = 0 1) so that the system has the form

(5.2 r'(t) = 2(t + EF(ý(t))(biixx(t) + bl 2Xr2 (t))
(5.2) 2X'(t) = eF(ý(t))(b2 X1 (t) + b22X2(t)).

10



Taking a system of polar coordinates xI = e, cos p, x2 = Ce P sin V we find that

+ (E/C) cos p(b 21 cos V + b22C sin p)F(ý)

p' =C sinVCOSV+Ecos V(bi1COSV+bi 2 Csin )F(ý)

+ (c/C) sin p(b 2i cos V + b22C sin V(F(ý).

Making the choice C e e2 /3, the generator has the form

L = _E2/ 3 sin%2 --a + sinp coS V

+G + / 3V1 + cV 2 + E5/3 V

where

V1 = b21 cos 2  + F(ý) a-b 2lF(l) sin v cos p-0 op
V2 = (b22 - bi 1 )sinp cos VF(ý) a + (bi, cos2 p + b22 sin2 ýp)F(C) a

V3 -b12 sin 2 ---a + b12 sin coS V .9

This has the same structure as in the case of white noise. If the coefficient b21 is non-zero.
we may apply the homogenization procedure described above to obtain the approximate
generator as

e2/ 3 b 1Lf - e 2/3 sin2 p + sinsVcos--}p + O(5).

Apt.:ying the adjoint method we again obtain the result in the form as stated in Theorem
2.1.
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